
Letting your fuzzer know about target’s
internals

Rodrigo Rubira Branco (BSDaemon)

Senior Vulnerability Researcher

rodrigo *noSPAM* kernelhacking.com

2Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

AgendaAgenda

� Objectives / Introduction

� Fuzzers and misconceptions

� Into software flaws

� Target’s internals

� Implementation details and limitations

� Future

EVERYTHING in 60 MINUTES!

3Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

ObjectivesObjectives

� Show the added value of Hacking

� Demonstrate how fuzzers works, and why/when they are

useful (or not)

� Explain what are the target useful internals information

� Explain how a debugger works

� Analyze security bugs and useful informations to feed

back a fuzzer

4Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Security nowadaysSecurity nowadays

� Buggy programs deployed on critical servers

� Rapidly-evolving threats, attackers and tools
(exploitation frameworks)

� Lack of developers training, resources and people to fix

problems and create safe code

� That’s why we are here today, right?

5Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Security nowadays – 0day challengeSecurity nowadays – 0day challenge

First host

attacked

All vulnerable hosts

attacked

Reaction time

Slammer: 10 mins

Future worms: < 1 minute [Staniford et. al. 2002]

“0day Statistics

Average 0day lifetime:

348 days

Shortest life:

99 days

Longest life:

1080 (3 years)"

- Justine Aitel

6Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Introduction – What is a fuzzer?Introduction – What is a fuzzer?

� “Fuzz testing, fuzzing, Robustness Testing or

Negative Testing is a software testing technique that

provides random data ("fuzz") to the inputs of a program.

If the program fails (for example, by crashing, or by
failing built-in code assertions), the defects can be noted.

The great advantage of fuzz testing is that the test

design is extremely simple, and free of preconceptions

about system behavior.”
» Source: Wikipedia

7Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Fuzzer - MisconceptionsFuzzer - Misconceptions

� In the definition itself:
“If the program fails (for example, by crashing, or by failing built-in code
assertions), the defects can be noted.” -> What if the program does not
fail, but, for example, a memleak occur?

� In the code coverage principle:
– It is important to fuzz other portions of the code (i.e. application

expecting “auth: “ in the beginning of the buffer)

– It does not tell you how good are the fuzzer (90% of code coverage may
spot just 10% of the bugs if they miss important security-related
constructions)

� In the way it is done nowadays:
– ‘Dumb’ fuzzers -> Really bad input streams

– Code coverage are based in static analysis and function flows

– Most of the fuzzer solutions, are missing the target’s internal information

8Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Fuzzing – Actual StateFuzzing – Actual State

� Full fuzzer uses a protocol specific (think RFC) to the

target program and works only for that protocol (i.e.:
SMTP fuzzer)

� Mutation fuzzer (sometimes called capture/replay) starts

with some known good data, changes it somehow, and

than repeatedly delivers mutations of that data to the
target.

Source: Revolutionizing the Field of Grey-box Attack Surface
Testing with Evolutionary Fuzzing

9Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Evolutionary FuzzingEvolutionary Fuzzing

� Use static analysis to feedback the fuzzer and achieve

code coverage

� The fuzzer is responsible for changing the input data

based on the information returned by the fuzzer, thus,

learning the underline protocol

� Use sessions based on the protocol graph and coverage

– tieing together multiple requests

10Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Into software flaws – Low level
vulnerabilities

Into software flaws – Low level
vulnerabilities

� Memory Corruption Vulnerabilities
– Popular means to take control of target program

– 49% of all attacks in 2006 (yeah, we all know that web-based
vulnerabilities are evolving)

– Successful attacks cause a remote code execution

– Attack techniques: stack and heap overflows, integer problems
(leading to overflows or memory disclosure) and others

� Trigger the vulnerability will lead to program crash
– Fuzzers usually detect a flawed application when it crashes

– As said, they miss many other cases (memleaks and syncing
problems)

– ASLR-based systems turn this even more unpredictable in the
real-world

11Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Memory corruptionMemory corruption

Attacker’s code retAddrNOP

12Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

State Transition for Memory CorruptionState Transition for Memory Corruption

c: corrupting instruction

t: takeover instruction

f: faulting instruction

� Case 1

(green):
Format String

� Case 2 and 3

(red and

blue): buffer

overflow

� Case 4

(purple):

unpredictable

Source:

Automatic Diagnosis and

Response to Memory

Corruption Vulnerabilities

13Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

So, what?So, what?

� Legitimate assumption:

– To change the execution of a program illegitimately we need to

have a value being derived from the attacker’s input (which we

call: controlled by the attacker)

� String sizes and format strings should usually be

supplied by the code itself, not from external, un-trusted

inputs.

� Any data originated from or arithmetically derived from

un-trusted source must be inspected.

14Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Taint AnalysisTaint Analysis

� Tainted data: Data from un-trusted source

� Keep track of tainted data (from un-trusted source)

� Monitors program execution to track how tainted attribute

propagates

� Detect when tainted data is used in sensitive way

� Taint check perform dynamic taint analysis on a program
by running a program in its own emulation environment.

15Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Real-world applicationsReal-world applications

� Jin Chow –“Understanding data lifetime via whole

system emulation” –presented at Usenix‟04.

� Created a modified Bochs (TaintBochs) emulator to taint

sensitive data.

� Keep track of the lifetime of sensitive data (passwords,

pin numbers, credit card numbers) stored in the virtual

machine memory

� Tracks data even in the kernel mode.

� Concluded that most applications doesn’t have any

measure to minimize the lifetime of the sensitive data in

the memory.
• Tks to Edgar Barbosa for the information

16Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Taint AnalysisTaint Analysis

x86 instructionx86 instruction

U CodeU Code

U CodeU Code

X86 instructionX86 instruction

Source: Dynamic Taint Analysis for Automatic Detection AnalysisSource: Dynamic Taint Analysis for Automatic Detection Analysis

Taint Check
Valgrind
emulator

Taint check

17Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Feeding-back our fuzzerFeeding-back our fuzzer

Taint Tracker Taint AssertTaint Tracker Taint Assert

Data from
Fuzzer

Malloc’d Buffer
Untainted
Data

Add

Copy

Pointer

Attack
Detected

Taint Seed

Feedback-based fuzzer receiving tainted information and
target’s internal information

Feeding-back the fuzzer

Modified from: Dynamic Taint Analysis for Automatic Detection AnalysisDynamic Taint Analysis for Automatic Detection Analysis

Program’s internal information

18Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Inheritance problemsInheritance problems

Rare
e.g., malloc/free, system calls

Frequent

e.g., memory access,

data movement

Events

Problem: state explosion for binary operations !

mov %eax � A

mov B � %eax

taint(%eax) = taint(A)

taint(B) = taint(%eax)

Application Propagation
Tracking

%eax inherits from A

B inherits from %eax

Inheritance
Tracking

add %ebx � D taint(%ebx) |= taint(D) insert D into %ebx’s

inherit-from list

19Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Dynamic analysisDynamic analysis

� Tracks program state

� Monitors memory writes and checks for violation of security
condition
– A given memory region may correspond to different program variables

depending on program state

– We need to keep track of memory mapping

� Tracks tainted data and its propagation

– Consider the actual register values to determine the tainting of
information:

» If A is tainted and you AND it with B which is not tainted and B is 0 that
means the result is not tainted anymore, since you cannot control the result
of the AND. If B is 1 in this case, the result is also tainted

� Instrument binary in runtime (mutating the target)

20Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Data Structures – Memory TrackingData Structures – Memory Tracking

� Used memory
– Memory corresponding to program variables

� Control memory
– Saved registers, return addresses, metadata encapsulating dynamically

allocated memory regions (heap information blocks)

� Program State (function calls/return)
– Local variable addresses are calculated and added to Used memory

– Location of return address and saved registers are added to the control
memory list

� Heap memory
– malloc/free calls are hooked

– Allocated memory is added to used memory

– The heap metadata are added to the control memory

21Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Feeding back the fuzzerFeeding back the fuzzer

� When a instruction writes to a memory address, check:

– If the address is in the used list

» Determines the variable it belongs to

» Checks if the value written comes from un-trusted source

» Validate if the allocation routine have been in somewhat controlled

by the input (resource-starvation attacks)

» Validate the pair, malloc/free to spot memleaks

– If the address is in the control list

» It is a memory corruption

» Feed-back the fuzzer with the program state and input value

responsible for the overwrite

22Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Run-time static analysisRun-time static analysis

� Avoid the needle of a single-step to track memory

accesses

� Performance gain (we are fuzzing after all!)

� Remember, every {watch|break|point hit has a penalti:

– Debuggee triggers the {watch|break}point – Trap to OS

– OS gives the control to the Debugger

– Debugger read the status of debuggee from the OS

– Debugee context activated for the information gathering

– OS reads the information

– Debugger activated again, to receive the information

23Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

HeapViewHeapView

� Gives information regarding the heap structures

– Independent of the OS structures (we feed the fuzzer with the

heap structure – actually supported: Linux – CORE Security

released something for Windows)

– Many heavy programs have its own heap allocators

� Visual view of the heap state

– Important to detect memleaks

– Useful to detect small overwrites that not crash the target

(usually it will crash along the time, turning very difficult to

determine what triggered that condition – c != f)

– State of the bins

– Very useful for later exploit construction
c: corrupting instruction

f: faulting instruction

24Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Mutating the targetMutating the target

� It occurs altering the path of execution

– Bypassing protection directives in runtime

– Feedback the fuzzer with internal information regarding the

protection (useful to find integer overflows)

� Can be done in kernel mode to instrument the OS kernel

– Patching the original function

– Finding inlined functions using static analysis

25Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Genetic ProgrammingGenetic Programming

� Machine-learning approach to automatically creating
computer programs by means of evolution
– In the EFS fuzzing, it means create inputs based on the target

internals

– In my approach, it means modifying the target in such a way that
the input fits the conditions, and if a vulnerability is found,
feeding back the fuzzer with the needed information to create the
input

� We need to model the call dependencies (program flow
graphs) in order to be sure about the exploitability
vectors
– It is easy since we taint the input

– Do the reverse lookup to find all the trigering vectors

26Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Another problem solved...Another problem solved...

� Conditions that does not exist in the default configuration or in the target
configuration

– I.E.: The vulnerability does exist just when the option ‘x’ is defined in the conf.
File

– Since when the debugger change the condition to ‘true’, it will spot the
vulnerability, but since it’s not trigerable changing the input (the condition is not
controlled by a tainted data) feedback the fuzzer with that information (i.e.:
vulnerability detected if condition ‘y’ not controlled by the input do exist)

– This question appeared when auditing a complex software, with many optional
configurations

� Target mutation is needed when testing something not directly controlled by
the attacker input

– This appeared when auditing pop3 caching files

– The email file is created by a SMTP server

– The file is then readed by the pop3 server and then written to the cache

27Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Why valgrind?Why valgrind?

� “The Valgrind tool suite provides a number of debugging

and profiling tools”

� Supports extensions, the plugin tools

� Able to instrument a program in runtime

– Uses an intermediate language, VEX, which are a RISC-like

language

� There is also a standalone version, created to support

more architectures/OSes

– Ported to be used on Windows

28Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

The need for intermediate languages...The need for intermediate languages...

� Assembly instructions have explicit operands, which are

easy to deal with, and sometimes implicit operands:

– Instruction: push eax

– Explicit operand: eax

– What it really does?

» ESP = ESP – 4 (a substraction)

» SS:[ESP] = EAX (a move)

» Here we have ESP and SS as implicit operands

• Tks to Edgar Barbose for this great example!

29Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Valgrind’s PluginsValgrind’s Plugins

� pre_clo_init() -> VG_DETERMINE_INTERFACE_VERSION(my_pre_clo_init)

– All the initialization will be done here
» VG_(basic_tool_funcs) (my_post_clo_init,

my_instrument,

my_fini);

– Set our handlers:
» VG_(needs_malloc_replacement)()

» VG_(track_new_mem_heap)()

» VG_(track_new_mem_brk)()

» VG_(track_new_mem_mmap)()

» VG_(track_copy_mem_remap)()

» VG_(track_change_mem_mprotect)()

» VG_(track_pre_mem_read)()

» VG_(track_pre_mem_write)()
» VG_(track_post_mem_write)()

» VG_(needs_syscall_wrapper)()

� post_clo_init() -> my_post_clo_init()
� instrument() -> my_instrument()
� fini() -> my_fini()

– It will be called in the end of the process

– Will provide a summary for our fuzzer

30Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Instrument() functionInstrument() function

static

IRSB* my_instrument (VgCallbackClosure* closure,

IRSB* sbIn,

VexGuestLayout* layout,

VexGuestExtents* vge,

IRType gWordTy, IRType hWordTy)

{

31Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Library Preloading LimitationsLibrary Preloading Limitations

� Library preloading could be used in some cases to track

the heap (malloc/calloc/realloc/free function hooks)

� It’s very limited since will miss inlined functions, direct

brk()/mmap() calls and static applications

– Was used in the beginning of the implementation since it’s easier

to debug

� It changes the loading address of the libraries, thus,

breaking the heisenberg principle

32Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Distributing the ProblemDistributing the Problem

� An address to the debugger is:

Native_Addr.Node_Addr.Offset_from_beginning (each
instruction counted by 1 don't matter it's size - we modify

instructions)

� Because of that we can use a multi-threaded fuzzer to

generate input data for ‘n’ targets (nodes in the cluster)

– Saving the state, synchronizing or whatever to distribute also the

generation work, but it’s not really needed unless there is a need

for resume – because most of the ‘cpu-intensive’ work are been

done in the target itself.

33Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

AlgorithmsAlgorithms

� Metaheuristic search algorithms are helping in the target

analysis

� SAT solvers and other decision algorithms

� Address range inspection defined by the fuzzer, avoiding
testing of not ‘needed’ areas of the program and

receiving human-decisions

34Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Case Study: Solaris SadminCase Study: Solaris Sadmin

� Solstice AdminSuite is a set of applications for

distributed system administration. sadmind is a daemon
used by Solstice Adminsuite to control the servers

running Sun Solaris operating system.

� Vulnerability found, exploited and released by RISE

Security in October/2008

� Two new vulnerabilities found by Secunia:

– Secunia identifier SA32473, dated 2009-05-23

– No details at *ALL*

35Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

CVSS ScoresCVSS Scores

� Temporal score is 7.4 (remote heap overflow):

– Because the exploitability level of this vulnerability is unproven

(hummmm, not anymore…)

� Temporal score is 6.9 (remote integer overflow):

– Because the exploitability level of this vulnerability is unproven

(hummmm, not anymore…) and the complexity for exploitation

(really??).

36Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

What I hate in advisories?What I hate in advisories?

� No details at all... They are used just as marketing stuff,

not really to help the security community

� What I had? The previous vulnerability and exploit...

37Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

ResultsResults

� The heap overflow vulnerability:

– Occurs in: __0fNNetmgtArglistNdeserialValueP6DXDRUiTCPc

– The code:

» .text:0000F316 push eax

» .text:0000F317 push [ebp+arg_4]

» .text:0000F31A call _xdr_u_int <- Tainted value (array size)

» .text:0000F31F add esp, 8

» .text:0000F322 test eax, eax

» ...

» .text:0000F35E push dword ptr [ecx+408h] <- Tainted value (array size will
be used as parameter for the next call)

» ...

» .text:0000F374 call ___0fNNetmgtArglistNdeserialValueP6DXDRUiTCPc

38Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

ResultsResults

� .text:0000C61D push dword ptr [ebp+arg_C] <- Tainted value
will be used as parameter for the next call (the allocation
itself)

� .text:0000C620 call _calloc <- Buffer allocation

� ...

� .text:0000C687 call _xdr_bytes <- The buffer is used for the
xdr_bytes call, overwriting the array size with bytes_length
from network

39Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Results2Results2

� The integer overflow vulnerability:

– Occurs in: __0fMNetmgtBufferFallocUiTB

– The code:

» .text:0000A306 cmp dword ptr [eax+4], 0 <- If not allocated

» .text:0000A30A jz loc_A392 <- Allocate

» ...

» .text:0000A328 mov ecx, [ebp+arg_0] <- Reallocation

» .text:0000A32B mov eax, [ecx+8] <- Current Size

» .text:0000A32E add eax, [ebp+arg_4] <- Size from the XDR Header (taint it)

» .text:0000A331 mov esi, [ebp+arg_8] <- block_size

» .text:0000A334 xor edx, edx

» .text:0000A336 div esi <- Size divided by block_size

» .text:0000A338 inc eax <- +1

» .text:0000A339 imul esi, eax <- Multiplying by block_size

» .text:0000A33C push esi <- Overflowed integer will be allocated

40Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

Related ProjectsRelated Projects

– AddrCheck:

» Monitor malloc/free, memory accesses

» Check if all memory accesses visit allocated memory regions

– MemCheck: AddrCheck + check uninitialized values

» Copying partially uninitialized structures is not an error

» Lazy error detection to avoid many false positives

» Track propagation of uninitialized values

– TaintCheck: detect overwrite-based security exploits

» Tainted data: data from network or disk

» Track propagation of tainted data to detect violations

– LockSet: detect data races in parallel programs

– Memsherlock: automated debugger

– N-Variant: create variants of a system and examine it’s behaviour

[Nethercote’04]

[Nethercote & Seward ’03 ’07]

[Savage et al.’97]

[Newsome & Song’05]

[Ning et al.’07]

[Cox et al.’07]

41Kernel Hacking: If you really know, you can hack! – http://www.kernelhacking.com/rodrigo

FutureFuture

� I can’t foresee the future!

� I’m in the early development stages, so many new challenges

will be shown in the future

– Combinational explosion

– SAT testers limitations

– Byte-level tainting -> Some false positives...

� The focus of this research are in the debuggers being attached
to the target program to collect internal’s information, not in the

fuzzers itself (I did just simple implementations using the

debuggers information regarding flow and internal structures)

End! Really !?

Rodrigo Rubira Branco (BSDaemon)

Senior Vulnerability Researcher

rodrigo *noSPAM* kernelhacking.com

